Elliptic Involutive Structures and Generalized Higgs Algebroids
نویسندگان
چکیده
ELLIPTIC INVOLUTIVE STRUCTURES AND GENERALIZED HIGGS ALGEBROIDS Eric O. Korman Jonathan Block We study the module theory of two types of Lie algebroids: elliptic involutive structures (EIS) (which are equivalent to transversely holomorphic foliations) and what we call twisted generalized Higgs algebroids (TGHA). Generalizing the wellknown results in the extremal cases of flat vector bundles and holomorphic vector bundles, we prove that there is an equivalence between modules over an EIS and locally free sheaves of modules over the sheaf of functions that are constant along the EIS. We define Atiyah like characteristic classes for such modules. Modules over a TGHA give a simultaneous generalization of Higgs bundles and generalized holomorphic vector bundles. For general Lie algebroids, we define a higher direct image construction of modules along a submersion. We also specialize to Higgs bundles, where we define Dolbeault cohomology valued secondary characteristic classes. We prove that these classes are compatible with the non-abelian Hodge theorem and the characteristic classes of flat vector bundles. We use these secondary classes to state and prove a refined Grothendieck-Riemann-Roch theorem for the pushforward of a Higgs bundle along a projection whose fiber is Kähler.
منابع مشابه
An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves
In a (t,n)-threshold secret sharing scheme, a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together, but no group of fewer than t participants can do. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao, and the intractability of the elliptic curve discrete logar...
متن کاملHolomorphic Poisson Structures and Groupoids
We study holomorphic Poisson manifolds, holomorphic Lie algebroids and holomorphic Lie groupoids from the viewpoint of real Poisson geometry. We give a characterization of holomorphic Poisson structures in terms of the Poisson Nijenhuis structures of Magri-Morosi and describe a double complex which computes the holomorphic Poisson cohomology. A holomorphic Lie algebroid structure on a vector bu...
متن کاملGeometry and Topology of Manifolds
s 19 ALEKSEEVSKY, Dmitri , Geometry of quaternionic and para-quaternionic CR manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 BELKO, Ivan, The fundamental form on a Lie groupoid of diffeomorphisms 20 BOGDANOVICH, Sergey A., ERMOLITSKI, Alexander A., Hypercomplex structures on tangent bundles . . . . . . . . . . . . . . . . . . . . 22 DESZCZ, Ryszard, On Roter type mani...
متن کاملOn characterization of Poisson and Jacobi structures
We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids. MSC 2000: 17B62 17B66 53D10 53D17
متن کاملThe elliptic GL(n) dynamical quantum group as an h-Hopf algebroid
Using the language of h-Hopf algebroids which was introduced by Etingof and Varchenko, we construct a dynamical quantum group, Fell(GL(n)), from Felder’s elliptic solution of the quantum dynamical Yang-Baxter equation with spectral parameter associated to the Lie algebra sln. First we apply the generalized FRST construction and obtain a bialgebroid Fell(M(n)). Then, analogues of the exterior al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014